Electric Vehicle Optimization Team 2

Presentation By: Jeremy Randolph, Tyler Mitchell, Jakob Consoliver-Zack, Samantha Beeler

Sponsor: Dr. Michael Hays Advisor: Dr. Juan Ordonez

Cabin electronics drain semi-truck batteries

- Cold weather conditions reduce battery output
- Hotel System of Charging

Dr. Hays presented the design team with two major problems:

+Current range is unsatisfactory

+Cannot operate in -29°C (-20°F)

Presenter: Samantha Beeler

Overview

Goal Statement:

"To increase the current range and operable conditions of the electric vehicle by utilizing a secondary power source in efforts to apply this to semitrucks."

Objectives

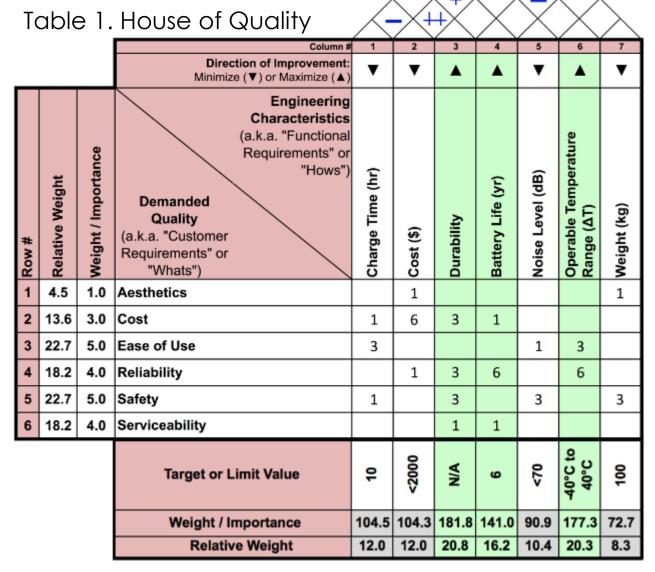
- Increase the lower temperature limit to -29°C
- Document current system
- Incorporate generator
- Integrate a battery monitoring system
- Model design for ISX-15 diesel engine.
- Ensure the vehicle can charge while running.

Golf Cart Features

Current Features

- Powered by 6 8-V lead/acid batteries
 - + The batteries do not work
- On-Board Charger
- 5,000 Watt DC Motor

To Be Added


- Generator Battery Monitoring System
- New Batteries
 - Will be selected by independent EE team

Presenter: Samantha Beeler

HOQ

Legend

+

6	Strong Relationship
3	Moderate Relationship
1	Weak Relationship
++	Strong Positive Correlation
+	Positive Correlation
_	Negative Correlation
▼	Strong Negative Correlation

Presenter: Samantha Beeler

Table 2. Morphological Chart

Parameter	Option 1	Option 2	Option 3	
Generator Location	Under back seat	On a Carriage	In place of the back seat	
How to warm the batteries	Use generator exhaust	Use heating pad	Insulate the batteries	
Ensure generator operation	Synthetic oil	Oil pan heater	Oil dipstick heater	
Charging system	Use onboard charger system	Develop new charger system	Modify present charger system	

Presenter: Jeremy Randolph

Selected Option

Complications in Selection

Figure 2. Photo of the back of the golf cart with recessed region under the rear seat.

Presenter: Jeremy Randolph

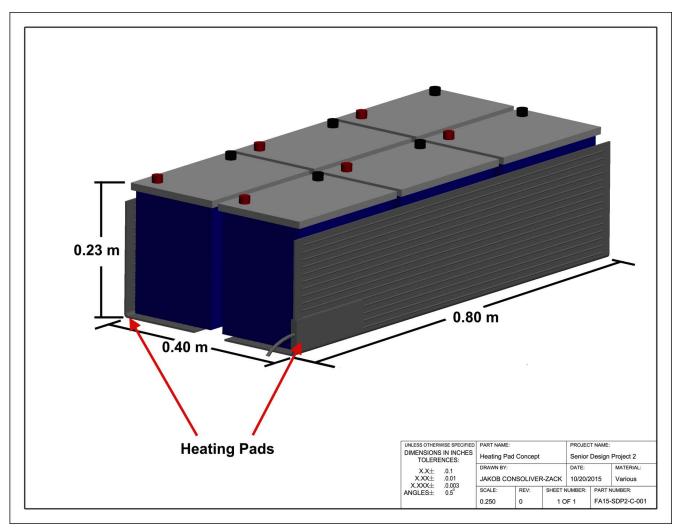
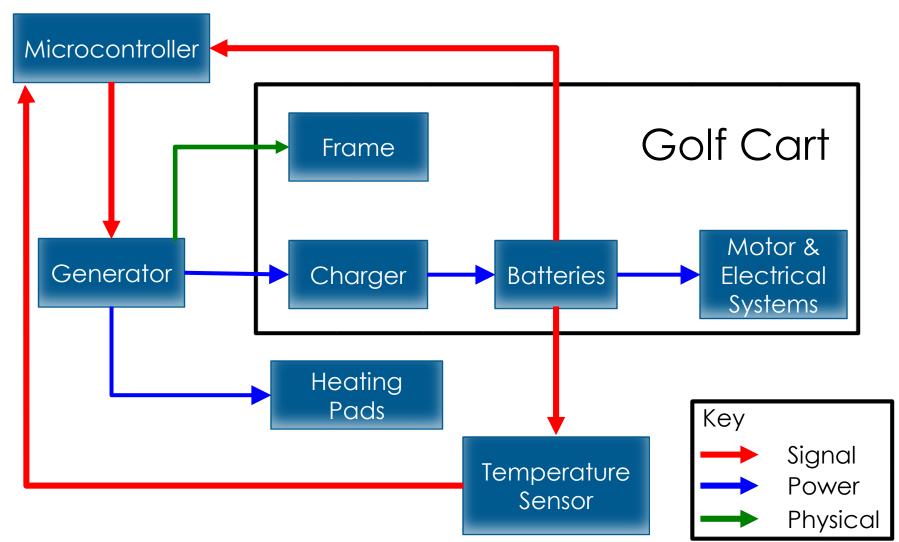



Figure 3. Initial concept of batteries and heating pads

Presenter: Jeremy Randolph

8

Initial Proposed System

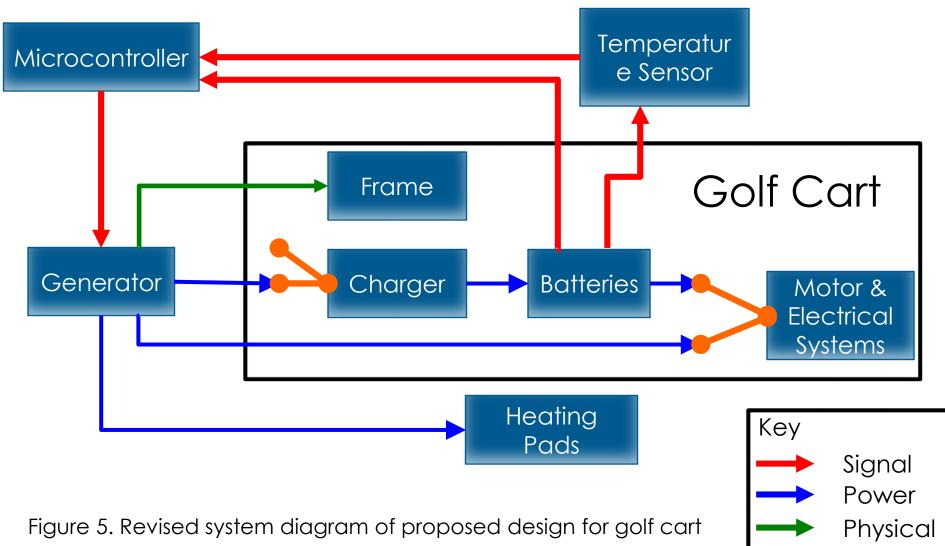
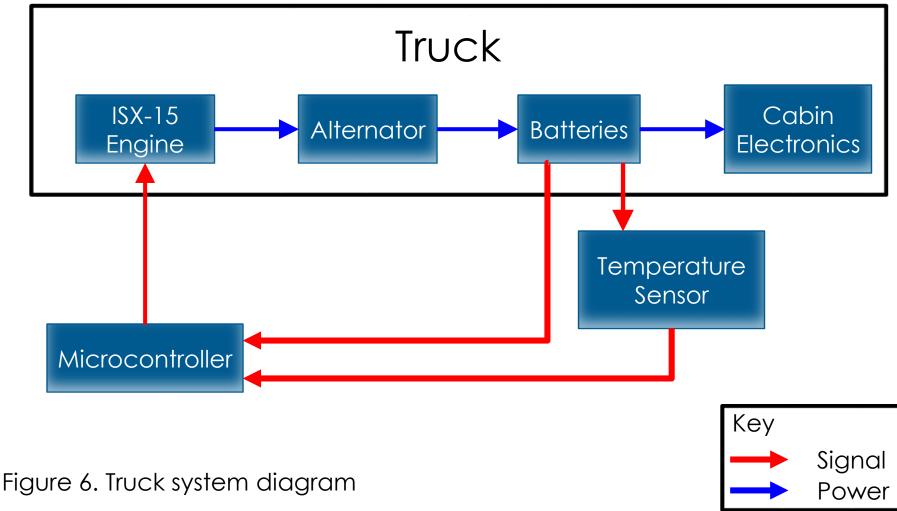

9

Figure 4. Revised system diagram of proposed design for golf cart Presenter: Jeremy Randolph

Revised Proposed System


10

Switch

Presenter: Jeremy Randolph

Proposed Truck Charging System

11

Presenter: Jeremy Randolph

Generator Selection

Table 3. Generator Requirements Vs. QG2800				
Selection Criteria	QG2800 Generator			
Must output at least 2,200 W	Can output 2,800 W			
Dimensions should not exceed: 685 mm x 360 mm x 400 mm	Dimensions: 560 mm x 415 mm x 325 mm			
Must operate at -29°C (-20°F)	Can operate at -29°C (-20°F)			
Lightweight	56.7kg (125 lbs.)			
Inexpensive	Provided free of charge			

Presenter: Tyler Mitchell

Figure 7. Cummins QG2800 Generator [1]

Heat Transfer Analysis

- Average heat capacity of lead acid batteries
 - + $C_p = 1,985 \frac{J}{kg^{\circ}C}$
- Mass of 6 lead acid batteries
 m = 192 kg
- I heating pad supplies 160W to the batteries

+ P_{total} = 960 W

Table 4. Time needed to heat batteries

Parameters	Ideal	Goal
Initial Temperature	-29°C	-29°C
Final Temperature	20°C	-10°C
Heat Required q = C _p m∆T	19,253 kJ	7,466 kJ
Time = $\frac{q}{P_{total}}$	5 hrs 34 min	2 hrs 9 min

Presenter: Tyler Mitchell

The Current Problem...

- Initially the design would not allow the batteries to be heated and charged at the same time.
- Time required to heat batteries is way too long
- Solution: heating pads will be used to prevent temperature from dropping below -10°C.

PARTDEAL.COM

Figure 8. Heating pad for batteries. [2]

Presenter: Tyler Mitchell

Mechatronic System Objectives

- Control when generator turns on and off.
- Control when heating pads are on.
- Monitor the battery temperature.
- Monitor the battery voltage.
- Control the motor power source.
- Control when the batteries are charging.

State Diagram

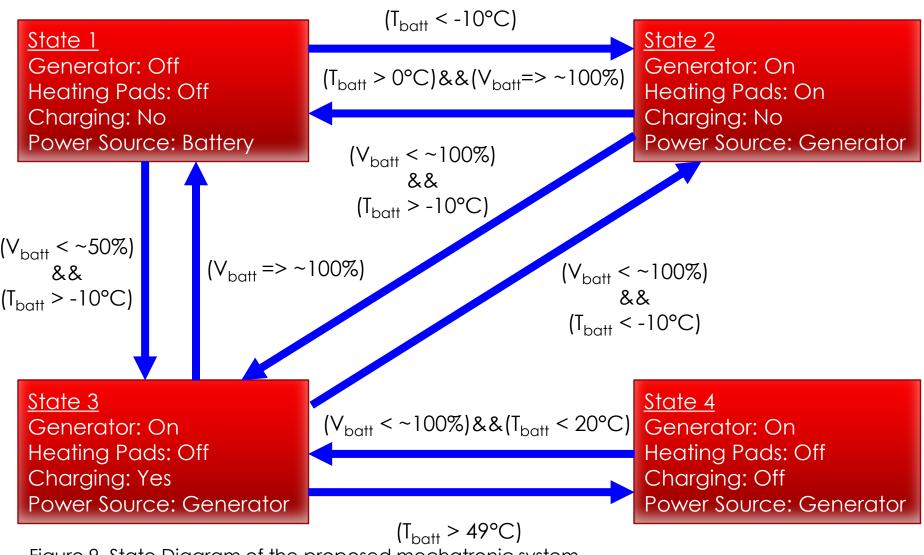
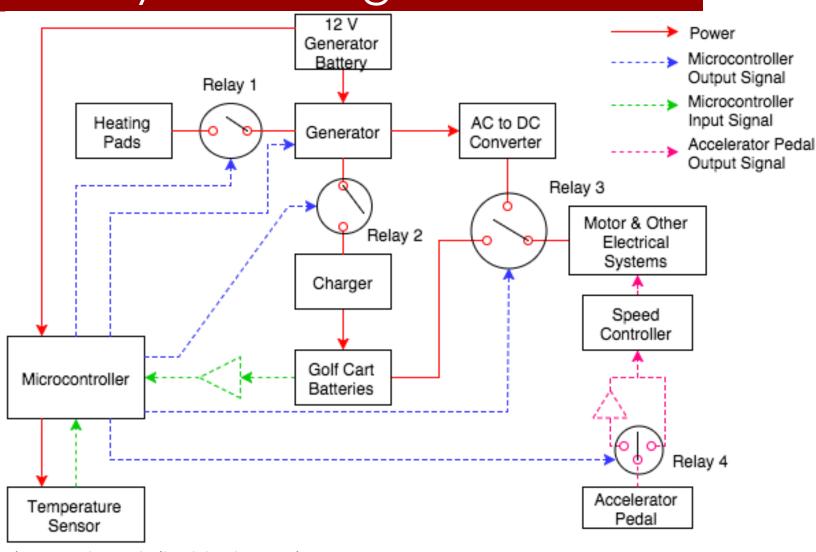



Figure 9. State Diagram of the proposed mechatronic system **Presenter: Jakob Consoliver-Zack**

Detailed System Diagram

17

Figure 10. Detailed System Diagram

Presenter: Jakob Consoliver-Zack

Microcontroller & Sensor

- Ruggeduino-ET
 - + 6 analog input pins
 - ✦Can run on input voltage of 3.5V to 30V
 - ✦ Operable at temperatures from -40°C to +85°C
 - + 68.6 mm x 54.4 mm

TMP36 Analog Temperature Sensor
 + Low voltage operation (2.7V to 5.5V)
 + -40°C to +125°C temperature range

Figure 12. TMP Sensor. Quarter for scale [4]

Presenter: Jakob Consoliver-Zack

Potential Challenges & Risks

- Presently the golf cart is not in working condition
- Inductive kickback during power switching
 + Ensure safeguards in circuit design
- Difficult to test entire system at cold temperatures
- Maximum Charge threshold value is a function of temperature
 - Experimentally determine the relationship
- Ensure design compatibility with ISX-15 engine

Gantt Chart

	<u>_</u>					4				
		Name		Begin date	End date					
G	ANTT project	0	Perform General Research	9/10/15	9/30/15					
Name	B	0	Document Vehicle Performance	10/1/15	10/12/15	Week 44 10/25/15	Week 45 11/1/15	l Week 46 11/8/15	Week 47 11/15/15	Week 48
	Perform General Research 9		Web Page Design and Mainte	10/6/15	11/25/15					
	Document Vehicle Performance 1 Web Page Design and Mainte 1				10/22/15					
	Preliminary Design 1		Select Mounting System	10/10/15	510/22/15					
	Select Mounting System 1				510/22/15					
	Select Generator 1 Detailed Design 1		Detailed Design		5 11/14/15				_	
	Mounting System Design 1 Thermal Analysis 1		Mounting System Design		5 11/12/15				-	-
	Determine and select microco1	0	Thermal Analysis	10/23/15	511/12/15					-
0	Order Components 1	0	Determine and select microco	.10/23/15	511/12/15					
Fig	jure 13. Proje ct t		Order Components		5 11/26/15					

Presenter: Jakob Consoliver-Zack

Conclusion

- Integrate a generator into the present system.
- Install new low-temperature batteries into the golf cart.
- Warm the batteries with heating pads.
- Difficult to test the performance at low temperatures.
- Model this technology for semi-trucks with ISX-15 diesel engine.

Future Plans

- Create detailed design of how to mount generator to the cart.
- Work in tandem with EE team to develop necessary circuitry required for the design.
- Begin programming mechatronic system for small scale model of design.

Presenter: Jakob Consoliver-Zack

- [1] Cummins. RV Generator Set Quiet GasolineTM Series RV QG 2800.
 N.p.: Cummins, n.d. Cummins Powersuite. Cummins. Web. 20 Oct. 2015.
- [2] Zerostart Blanket Style Battery Heater. Digital image. Partdeal. N.p., n.d. Web. 9 Nov. 2015.
- [3] "Ruggeduino-ET." Rugged Circuits. N.p., n.d. Web. 09 Nov. 2015.
- [4] "TMP36 Analog Temperature Sensor." Adafruit. N.p., Web. 09 Nov. 2015.
- [5] Sanders, Chris. Question mark. Digital image. ON THE IMPORTANCE OF QUESTIONS IN AN INVESTIGATION. N.p., n.d. Web. 20 Oct. 2015.
- [6] Kiessling, Reiner. "Lead Acid Battery Formation Techniques." Digatron Firing Circuits (n.d.): n. pag. Web. 4 Nov. 2015.

Presenter:

Questions?

Presenter:

Decision Matrices

Table A. Generator Location

Criteria	Option 1	Option 2	Option 3
Cost	S	_	S
Weight	S	_	+
Noninvasive	S	_	_
Safety	S	_	_
Total	0	-4	-1

Table C. Ensure Generator Operation

Criteria	Option 1	Option 2	Option 3
Cost	S	_	_
Weight	S	_	_
Noninvasive	S	_	_
Safety	S	_	_
Total	0	-4	-4

Table B. How to warm the batteries

Criteria	Option 1	Option 2	Option 3	
Cost	S	+	+	
Weight	S	+	+	
Noninvasive	S	+	+	
Safety	S	+	+	
Total	0	+4	+4	

Table D. Charging System

Criteria	Option 1	Option 2	Option 3
Cost	S	_	_
Weight	S	S	S
Noninvasive	S	S	+
Safety	S	+	+
Total	0	0	+1